10. Dynamic Programming: Advanced DP

MIT 6.046J Design and Analysis of Algorithms, Spring 2015
View the complete course: http://ocw.mit.edu/6-046JS15
Instructor: Srinivas Devadas

In this lecture, Professor Devadas introduces the concept of dynamic programming.

License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

source by MIT OpenCourseWare

go programmation

Mourad ELGORMA

Fondateur de summarynetworks, passionné des nouvelles technologies et des métiers de Réseautique , Master en réseaux et système de télécommunications. ,j’ai affaire à Pascal, Delphi, Java, MATLAB, php …Connaissance du protocole TCP / IP, des applications Ethernet, des WLAN …Planification, installation et dépannage de problèmes de réseau informatique……Installez, configurez et dépannez les périphériques Cisco IOS. Surveillez les performances du réseau et isolez les défaillances du réseau. VLANs, protocoles de routage (RIPv2, EIGRP, OSPF.)…..Manipuler des systèmes embarqués (matériel et logiciel ex: Beaglebone Black)…Linux (Ubuntu, kali, serveur Mandriva Fedora, …). Microsoft (Windows, Windows Server 2003). ……Paquet tracer, GNS3, VMware Workstation, Virtual Box, Filezilla (client / serveur), EasyPhp, serveur Wamp,Le système de gestion WORDPRESS………Installation des caméras de surveillance ( technologie hikvision DVR………..). ,

21 réflexions sur “10. Dynamic Programming: Advanced DP

  • juillet 23, 2021 à 1:53
    Permalien

    Greedy al gore rhythm sounds like my kind of thing! I use greedy algorithms at my home in my own programs all the time

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    Why there were only 5 trees for n=3? (Why did he look at the different structures only, but not different ways to form the multiplication?)

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    If you really want a counter example for 3 nodes, I suggest 1(w=20), 2(w=19), 3(w=18)
    Greedy would unbalance the tree in 1->2->3 giving a cost of 112
    Optimal solution would give a balanced tree of 1<-2->3 that would cost 95

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    I can see Eric Demaine sitting in the first row at (16:16) , he might be wondering, no subproblems and guessing, just directly the recurrence relation 😀

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    This was good I am still trying to figure out the co-efficients for the trees, and I wil search on GITHUB for a dynamic programming algorithm and see how it works. I wish there was github libraries linked somewhere on the website in a PDF or something because it's a little tricky to code.

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    One thing I don't get about all those recursions is, why are you guys don't mention that stack is limited and able to hold limited recursive calls to functions, and for some big enough input number for problem to be solved for, you might get stack overflow.
    Or is this all just theory and one shouldn't be thinking about how to use it in practice?

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    dp[i, j] = min(dp[i, j], e(i, r-1) + e(r+1, j) + wr * (depth+1)) also works if you add the depth every time you go down the recursion tree.

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    can anyone help me with the complexity of coin game ques how is no of sub problems n square?

    Répondre
  • juillet 23, 2021 à 1:53
    Permalien

    One of the best DP lectures I have ever seen. Thanks to MIT open course ware and Prof. Srinivas Devadas

    Répondre

Laisser un commentaire